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Abstract The relation between immune system, estrogen

deficiency and postmenopausal bone loss is an intriguing

and yet unexplained challenge of the past two decades.

Here we summarize the evidences that link estrogen defi-

ciency, T and B cells proliferation and activation, cytokines

production, and bone loss with particular regard to humans.
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Introduction

It is well known that diseases characterized by inflammation

and activation of immune system are associated with sys-

temic and local bone loss [1, 2]. Similarly, estrogens are

well-known regulators of the immune system and T cells

functions [3, 4]. Despite these observations, it is only in the

last few years that investigators have paid attention to the

interaction between immune system and postmenopausal

bone loss and it is only in the recent years that T lympho-

cytes have been recognized as key regulators of osteoclast

(OC) and osteoblast (OB) formation and activity [5, 6].

The role of T cells in bone metabolism is still contro-

versial; the majority of the data have been obtained in mice

while little information is available regarding the role of T

cells in human bone loss. Human studies show a key role of

T cell produced TNF in rheumatoid arthritis [7], multiple

myeloma [8, 9], and bone metastasis [10, 11]; our group

recently suggested a key role of T cells also in postmen-

opausal bone loss [12]. Other reports show that estrogen

deficiency increases the production of TNF and RANKL by

bone marrow cells, including T cells, and that their increase

correlates with indices of bone resorption [13–15].

The majority of the data have been obtained in animal

models and in vitro cultures, while data on humans are few,

this review aims to summarize the evidences that link

estrogen deprivation, immune function, and bone loss with

particular attention to humans.

Estrogen Loss and OC Formation

Estrogen loss increases bone resorption acting mainly

through cytokine-driven increases in OC formation; OC

formation occurs when monocytes are co-stimulated by the

essential osteoclastogenic factors receptor activator of

NFjB ligand (RANKL) and macrophage colony stimulat-

ing factor (M-CSF) [16–18]. These cytokines are produced

by bone marrow stromal cells [15], OBs [19], and activated

T cells [12, 20].

RANKL is a member of the TNF super family that is

present as both a transmembrane molecule and a secreted

form; it binds to its physiologic receptor RANK, which is

expressed on the surface of OC lineage cells. Its action is

opposed by osteoprotegerin (OPG), a neutralizing soluble

decoy receptor, produced by marrow stromal cells and OB

[16]. The unbalance between RANKL and OPG has been

indicated as the pivotal mechanism responsible for estro-

gen deficiency bone loss [14, 18].

M-CSF induces the proliferation of OC precursors, the

differentiation and the fusion of more mature OCs, and

increases the survival of mature OCs. RANKL promotes

the differentiation of OC precursors into fully mature
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multinucleated OCs and stimulates the capacity of mature

OCs to resorb bone.

Additional inflammatory cytokines are responsible for

the upregulation of OC formation observed during estrogen

deficiency; some of these molecules have a well-estab-

lished role in osteoclastogenesis and bone loss, while oth-

ers have not. Among these molecules, the most involved in

estrogen deficiency bone loss appears to be TNFa, IL-1,

IL-7, and IFNc.

TNFa

TNFa is a factor which enhances OC formation by

up-regulating stromal cells production of RANKL and

M-CSF, and by augmenting the responsiveness of OCs

precursors to RANKL [10, 21]. Furthermore, TNF directly

induces marrow precursor’s differentiation into OCs in the

absence of RANKL, although according to some studies it

is not osteoclastogenetic in cells not previously primed by

RANKL [22]. TNF increases after menopause both in mice

[23] and in humans [12, 24], and it is produced mainly by

activated T cells. A recent paper suggests that in vivo

blockade of TNF in postmenopausal osteoporosis reduce

bone resorption [25], as in rheumatoid arthritis [26], this

suggests that TNFa increase could be one of the mecha-

nism responsible for postmenopausal bone loss.

IL-1

It has been demonstrated that IL-1 plays an important role

in bone loss induced by estrogen deficiency, particularly it

has been demonstrated that IL-1 levels increase after

menopause, that this increase is reversed by estrogen

replacement in women [24, 27] and that bone loss does not

occur after ovariectomy in mice deficient in receptors for

IL-1 [28]. Moreover, treatment with IL-1 receptor antag-

onist decreases OC formation and bone resorption in

ovariectomized mice [29, 30]. A recent study demonstrate

that the blockade of both TNF and IL-1 reduce bone

resorption in postmenopausal osteoporosis [25].

IL-1 acts by increasing RANKL expression by bone

marrow stromal cells and directly targets OC precursors

and promotes OC differentiation in the presence of per-

missive levels of RANKL. The effect of TNF on osteo-

clastogenesis is upregulated by IL-1 [31].

IL-7

Recently a central role in bone remodeling has also been

postulated for IL-7 [10, 32–34], which is a cytokine known

for its ability to stimulate T and B cell number and reaction

to antigenic stimuli in humans [35]. We and others dem-

onstrated that IL-7 is also produced by T cells in post-

menopausal women [36] and in cancer patients [10].

Some studies have demonstrated that IL-7 promotes

osteoclastogenesis by upregulating T cell-derived osteo-

clastogenic cytokines; including RANKL [32, 36, 37] and

that the production of IL-7 is upregulated by estrogen

deficiency [32, 33, 38]. A recent study in mice suggest that

IL-7 increases OC formation by increasing OC precursor

generation, presumably through an action on the cells

attached to bone rather than on cells contained in the bone

marrow [38]. On the contrary, recent studies on IL-7

receptor-deficient mice suggest that IL-7 has an anti-

osteoclastogenic effect in vivo, in particular the authors

suggest that IL-7 deficiency in mice caused increased OC

number in bone and decreased bone mass and that OVX-

induced bone loss in these mice occurred in trabecular, but

not cortical bone [39, 40].

As regards humans, the results are less controversial, in

particular it has been suggested that IL-7 is osteoclasto-

genic in psoriatic arthritis [41] and in patients affected by

solid tumors [10, 42, 43], also in healthy volunteer the

expression of IL-7 receptor on T lymphocytes correlates

with their ability to induce osteoclastogenesis from human

monocytes [44].

IFNc

The effect of IFNc on OC formation and activity is contro-

versial. IFNc behave like an anti-osteoclastegenic cytokine

in vitro [45], in vivo in nude mice [46], and in a knockout

model in which the onset of collagen-induced arthritis is

more rapid as compared with wild-type controls [47].

These data are not confirmed by studies in humans and

in experimental models of diseases that indicate an

increased level of IFNc during estrogen deficiency and

endotoxin-induced bone disease [48, 49].

In humans, IFNc is positively correlated with bone

erosions in leprosy and rheumatoid arthritis [50, 51].

Moreover data from randomized controlled trials have

shown that IFNc does not prevent bone loss in patients with

rheumatoid arthritis [52, 53], nor the bone wasting effect of

cyclosporin A [54].

In humans, it has been suggested to employ IFNc in the

treatment of osteopetrosis. In this condition, IFNc is able to

restore bone resorption [55].

Taken together, the data in humans suggest that, in some

conditions, including estrogen deficiency, IFNc stimulates

bone resorption. These discrepancies could be explained by

the fact that IFNc influences OC formation both via direct

and indirect effects [48]: it directly blocks OC formation
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targeting maturing OC [56] and induce antigen presenta-

tion and thus of T-cell activation in vivo. Therefore, when

IFNc levels are increased in vivo, activated T cells secrete

pro-osteoclastogenic factors and this activity offsets the

anti-osteoclastogenic effect of IFNc.

Estrogen Loss and Immune System

Plenty of data suggest that sex hormones have an important

role in the regulation of immune function. Estrogen

receptors have been demonstrated on human blood mono-

nuclear cells, splenocytes, thymocytes, and peripheral T

cells more than 20 years ago [57, 58]. The addition of

estradiol to in vitro cultures of human lymphocytes can

enhance immunoglobulin secretion [59], and in vivo 17b-

estradiol treatment causes an augmentation of antibody

production against double-stranded DNA in mice [60].

Estrogen loss is effective in expanding the pool of B

lineage cells and particularly of B220 ? IgM- cells in mice

[34, 61], these cells has been regarded as OC precursors at

least in animal models. Estrogen deficiency is supposed to

increase the number of B cells trough the increased levels

of IL-7.

How B-lineage cells may lead to bone destruction is not

presently understood, but may involve over expression of

RANKL in activated B cells [62]. Furthermore, early

B220 ? IgM- precursor cells have been found to be

capable of differentiating into OCs in response to M-CSF

and/or RANKL in vitro [63, 64] and may thus contribute to

increase the pool of OC precursors.

Clinically, both cellular and humoral immune responses

have been found to be higher in hormone replacement

therapy users than non-users [65], we recently demon-

strated that T cells from postmenopausal women are less

prone to immune stimulation as respect to pre-menopausal

healthy women [12]. Similarly, there are reports suggesting

that hormone replacement therapy might influence the

development and course of autoimmune disorders and

neoplastic diseases [66].

Estrogen withdrawal upregulates T-cell TNF production

by a complex pathway which involves the thymus and the

bone marrow: in the bone marrow, ovx promotes T-cell

activation by increasing antigen presentation by macro-

phages and dendritic cells [49, 52].

It is well known that the thymus undergoes age-related

atrophy coincident with enhanced circulation of sex ste-

roids from puberty onwards. The impact of this atrophy is

most profound in clinical conditions that cause a severe

loss in peripheral T cells capable of regenerating sufficient

numbers of naı̈ve CD4? T cells that is indirectly correlated

with age. Recent animal [67] and human studies [68]

demonstrated that castration results in complete and

enhanced regeneration of the aged mouse and human thy-

mus and restoration of peripheral T-cell phenotype and

function. These findings have underscored the role of

sexual hormones in the regulation of T cells activation and

reinforce the role of T cells in postmenopausal bone loss.

It has recently been reported that RANKL expression on

lymphocytes and marrow stromal cells is significantly

elevated during estrogen deficiency in humans and corre-

lates directly with increases in bone resorption markers and

inversely with serum estrogen levels [14] and that in

postmenopausal women, production of cytokines repre-

sentative of T helper 1 lymphocytes are increased, and this

effect is reversed by supplemental estrogen.

Taken together these data demonstrate that estrogen lose

causes an increase in T-cell activation and in production of

pro-osteoclastogenic cytokines; moreover, experimental

model demonstrated that this effect is the driver of

increased bone resorption after menopause as nude mice

appears not to lose bone after ovariectomy [23].

The complex pathway trough which estrogen acts on

immune cells and bone is summarized in Fig. 1.

T Cells and Osteoclasts: Reciprocal Interactions

Most osteoclastogenic cytokines also regulate macro-

phages or dendritic cells which share with OC their bone

marrow precursors during development, in particular it has

been demonstrated that circulating OC precursors exist

primarily within the monocytic fraction of peripheral blood

[12, 69–71] and their presence in the circulation serves

both as a reservoir for replenishing pre-osteoclast popula-

tions in the bone marrow as needed and as a potentially

abundant source of pre-osteoclasts that can be recruited

into bone or joint tissue in response to reparative or path-

ological signals, for this reason OCs have been regarded

as immune cells that are recruited in bone in response

to RANKL and costimulatory molecules expressed on

accessory cells.

In the recent years, several investigators have paid

attention to the role of T cells in regulating osteoclasto-

genesis; the majority of the studies both in animal and in

human models suggested that T cells induced OC forma-

tion, increased their lifespan and activity, while other

workers suggested that T cells could inhibit OC formation

in vitro. Some studies support the hypothesis that T cells

activation after estrogen withdrawal induce OC formation

and bone loss: in particular data from mice show that

adoptive transfer of wild-type T cells restores the capacity

of ovariectomy to induce bone loss, while transfer of T

cells from TNF null mice does not [23, 49, 72, 73]. Other

studies argued against a pivotal role of T cells in bone loss

induced by ovariectomy in mice models [74–76]. In
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particular, Lee et al. [76] suggested that nude mice lose

trabecular bone as well as wild-type after ovariectomy and

that T cells may have important effects on the cortical

rather than on trabecular compartment.

In postmenopausal osteoporosis, we demonstrated that T

cells are activated to a greater degree at baseline as respect

to healthy post- and premenopausal controls and that this

implies their greater ability to produce RANKL and TNFa
thus inducing OC formation and activity, we have also

demonstrated that in the absence of T cells from peripheral

blood mononuclear cells cultures OC formation is abol-

ished, this phenomenon is reversed only by the addition of

M-CSF and RANKL in cultures.

A recent paper by Senthilkumar et al. suggested an

interesting reciprocal interaction between OC and T cells,

mediated trough a direct interaction involving CD137/

Cd137L and RANK/RANKL; in particular the authors

suggested that the binding between RANK expressed on

OC and RANKL expressed on activated T cells activate a

signal-mediated mechanism that inhibit T cells prolifera-

tion (CD137 L), suggesting that OC can interact with T cell

exactly as an immune cell [77].

These summarized evidences suggest that T cells and

OC are strictly related, and that their interaction could

partially explain the relation between estrogen deficiency,

activation of immune system and bone loss, anyway the

interaction between T cells and OC are very complex and

only at the beginning of their knowledge.

Conclusions

In the last decade, several investigators have paid attention

to the relationship between estrogen, the immune system,

and the skeleton. Today the majority of the data have been

obtained in animal models, but in the recent years new

evidences have been accumulated in humans toward a

profound link between estrogen deprivation, immune sys-

tem deregulation, and bone loss. If this relationship will be

confirmed by future works, postmenopausal osteoporosis

should be regarded as an inflammatory disorder sustained

by a chronic mild decrease in T-cell tolerance.
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