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Bertea et al. Plant Responses to Lepidopteran Egg-Laying Q5
induced plant defenses. More information is available on the
diversity of plant responses elicited by egg-laying (Figure 1),
which are reviewed hereafter by narrowing the discussion to the
most recent literature.

THE PLANT SIDE: LOCAL AND SYSTEMIC
RESPONSES TO LEPIDOPTERAN EGG
DEPOSITION

Insect oviposition on a host plant represents a particularly high
risk for future herbivore attack and can enable plants to respond
even before the actual damage occurs (Hilker and
Fatouros, 2016).
Frontiers in Plant Science | www.frontiersin.org 2
species is less strong and specific compared to Brassica spp.,
being A. thaliana not a foodplant for these butterflies (Harvey
et al., 2007).

A second morphological plant response to insect eggs is
neoplasm formation (Petzold-Maxwell et al., 2011; Geuss et al.,
2017). This process consists of the growth of a new plant tissue
(callus) below insect eggs, which may lead to egg detachment
(Petzold-Maxwell et al., 2011). Neoplasm formation in
combination with HR-like necrosis was shown to be an egg-
killing response in several solanaceous species. Oviposition by a
specialist moth Heliothis subflexa induced such responses in two
ground-cherry species (Physalis spp.) (Petzold-Maxwell
et al., 2011).

More recently, Geuss et al. (2017) demonstrated that Solanum
dulcamara responds to Spodoptera exigua eggs with the
formation of neoplasms and chlorotic tissue. The accumulation
symbionts or predators might regulate egg-laying behavior in
Lepidoptera (Renwick and Chew, 1994; Ghidotti et al., 2018).

Females searching for an ideal LHP have to combine
multifarious sensory information mainly made of chemical,
visual, or tactile stimuli (Brévault and Quilici, 2010). Strategies
and signals involved are extremely variable and can be
summarized as follows: (i) blends of plant volatiles and (ii)
visual cues enhance the flight towards the oviposition site and
reveal where to land, (iii) substrate compounds are assessed
using legs, ovipositor, or proboscis and function as proxies for
quality and suitability of the plant site (Reisenman et al., 2010).

Although plants benefit from attracting pollinators, the
majority of butterflies and moths should be considered foes as
their larvae can be voracious herbivores. Thus, there is a trade-off
between resources employed by plants to attract insects for their
reproduction and those used to repel enemies. Wounds, bite,s or
the simple glueing of eggs are signs of current or future herbivore
threat and can trigger striking chemical, physiological, and
systemic reactions in plants (revised by Hilker and Fatouros,
2015; Schuman and Baldwin, 2016). If constitutive plant
compounds usually act as attractants, blends of chemicals
released as deterrents to eggs or herbivores may signal a
resource already occupied. According to the lepidopteran
species, the presence of conspecifics or heterospecifics could
enhance (e.g., Anderson and Alborn, 1999) or deter (Sato
et al., 1999; De Moraes et al., 2001) oviposition behavior.

Whatever the outcome (i.e., attraction or deterrence), the
presence of prior egg deposition is detected by females not
exclusively through sight or the perception of oviposition
deterring pheromones, such as those released by Pieris spp.
(Schoonhoven et al., 1990) or Anthocharis cardamines
(Dempster, 1992), but also by discriminating Oviposition-
Induced Plant Volatiles (OIPVs; see further section). For
instance, by perceiving OIVPs released by Brassica nigra, Pieris
brassicae selects egg-free plants as oviposition sites (Fatouros
et al., 2012).

Beyond the ability of adult Lepidoptera to perceive and
processing plant cues, thus modifying their oviposition
behavior, there is a deep gap in the knowledge of possible egg
counteradaptations used to overcome the bulk of oviposition-

Egg-Induced Direct Plant Responses
Plant defense strategies can directly target insect eggs through
desiccation, dropping, and crushing, eventually leading to egg
mortality (Hilker and Fatouros, 2015). Egg deposition of some
herbivores can induce reactions in plants that resemble a
hypersensitive-like response (HR). This mechanism usually
activated by pathogens causes rapid cell death and results in
the formation of necrotic plant tissue, leading to the isolation of
the pathogens from healthy tissues (Lam et al., 2001). The
formation of leaf necrosis in response to insect egg deposition
leads to the detachment of eggs from leaves or to their
desiccation. This process was observed for the first time in B.
nigra in which a necrotic zone develops 24 hours after Pieris
rapae oviposition; in 72 hours, the eggs dry out and often fall off
(Shapiro and DeVay, 1987). HR-like necrosis following P.
brassicae egg-laying was observed also in different plants
belonging to the Brassicaceae family (Pashalidou et al., 2015;
Griese et al., 2019). Probably a decrease of humidity due to cell
apoptosis underneath the oviposition site can cause a release of
water out of the eggs eventually leading to their shrinking
(Fatouros et al., 2014; Griese et al., 2017).

Recently, Griese and colleagues (2017) demonstrated that the
effectiveness of HR-like necrosis in B. nigra varies with plant
genotype, plant individual, and the type of egg-laying behavior
(singly or clustered). Egg bunching could be a strategy to
overcome plant defenses by keeping eggs from dehydration.
Thus, in P. brassicae, egg clusters are more effective to avoid
egg-killing compared to the single egg deposition, while the plant
genetic background defines the likelihood and severity of HR
under natural conditions. The authors hypothesized that the
formation of HR-like necrosis evolved as a defensive trait against
lepidopteran specialists of brassicaceous plants (Griese et al.,
2017). This hypothesis was tested by the same research group
who showed that elicitation of HR-like necrosis is specific to the
Pierinae subfamily, whose species are adapted to brassicaceous
host plants. Non-brassicaceous feeding species were not shown
to induce HR-like necrosis (Griese et al., 2019).

Localized cell death was also observed in Arabidopsis thaliana
after P. brassicae egg-laying (Little et al., 2007; Gouhier-
Darimont et al., 2019); however, the response in this plant
Month 2020 | Volume 10 | Article 1768
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of high levels of ovicidal hydrogen peroxide at the oviposition
site leads to egg-killing.

Egg-Induced Indirect Plant Responses
Oviposition can induce changes in the leaf chemistry (Fatouros
et al., 2008) or trigger the production of volatile organic
compounds (VOCs) called OIPVs (oviposition-induced plant
volatiles) acting as synomones, i.e. indirectly harming eggs or
imminent herbivores through the attraction of their
natural enemies.

Alterations of the leaf chemistry composition that can be
perceived by egg parasitoids after landing have been
demonstrated in several crops and wild species following
lepidopteran and hemipteran oviposition (Fatouros et al., 2005;

FIGURE 1 | Lepidopteran oviposition could represent a potential risk for host pla
to prevent or limit significant injuries. Therefore, plants have developed the ability
hatching (Beyaert et al., 2011) or even modify their own phenology to achieve an
bulk of evidence on the existence of specific plant responses that may endeavor
present on the egg surface (e.g. benzyl cyanide), and possibly 2) egg-associated
signaling pathways of which 3) salicylic acid (SA) plays a pivotal role (Hilfiker et al.
ovicidal compounds (H2O2) (Geuss et al., 2017) or 6) callose formation. Lepidopte
volatiles (OIPVs) enabling the plants 7) to attract egg parasitoids that, upon locatin
their own offspring (Tamiru et al., 2011; Fatouros et al., 2012; Cusumano et al., 2
OIPVs can also prime 9) neighboring plants (Mutyambai et al., 2016; Guo et al., 2
Fatouros et al., 2008; Conti et al., 2010). For example, higher
quantities of tetratriacontanoic acid and lower quantities of

341

342
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tetracosanoic acid (two important components of the
epicuticular wax) were found in A. thaliana leaves after P.
brassicae oviposition. These changes in molecule levels were
shown to be fundamental in retaining Trichogramma wasps to
egg-infested leaves (Blenn et al., 2012).

Lepidopteran egg-laying does not cause obvious damages in
plants (Tamiru et al., 2011; Fatouros et al., 2012), as it occurs in
other herbivores, e.g. leafhoppers and beetles (Hilker et al., 2002).
Therefore, in contrast to the significant or qualitative changes
prompted by herbivory in the plant volatile blends, OIVPs
involve primarily quantitative variations (Hilker and Fatouros,
2015), yet effective in attracting parasitoids of lepidopteran eggs
and larvae and even insectivorous birds (Mäntylä et al., 2018).
This has been demonstrated on egg-laden black mustard (B.
nigra) and landrace maize varieties (Zea mays), which induces
emission of volatiles able to attract Trichogramma egg

(Hilker and Fatouros, 2015), which can activate a pre-empted defense strategy
se egg deposition as a warning cue to increase defenses against larvae after
y flowering and reproduction (Lucas-Barbosa et al., 2013). Indeed, there is a
amage eggs directly or indirectly. Egg elicitors, i.e. 1) chemical substances
roorganisms trigger downstream defense responses regulated through hormone
14). Direct defense strategies include 4) necrotic tissue (HR-like necrosis), 5)
egg elicitors can also induce the production of oviposition-induced plant
he herbivore host eggs, inject their own eggs and kill the host embryo to feed
; Ponzio et al., 2016) or 8) insectivorous birds (Mrazova et al., 2019). In addition,
).
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parasitoids (Tamiru et al., 2011; Fatouros et al., 2012; Cusumano
et al., 2015; Ponzio et al., 2016).

While the ability of “warning” neighboring plants by means of
volatile compounds released against herbivorous attacks is
known to occur in various species (Heil and Ton, 2008), the
existence of priming by OIPVs has been proven only recently.
The study by Mutyambai and colleagues (2016) demonstrated
that OIVPs released from the maize landrace ‘Nyamula' are able
to attract the parasitic wasp (Cotesia sesamiae) of the stem borer,
Chilo partellus. These OIVPs also trigger an indirect defense
response in neighboring conspecific plants even when they are
not directly exposed to eggs. Among the volatiles released from
maize following C. partellus egg-laying or exposed to OIPVs, the
authors detected a strong emission of (E)-4,8-dimethyl-1,3,7,
nonatriene (DMNT), a key homoterpene known as a mediator of
herbivore-parasitoid system, with other terpenoids (limonene
and myrcene) and phenylpropanoids (methyl salicylate and
decanal), compounds often involved in tritrophic interactions.

Egg deposition or treatment with elicitors did not show
particular effects in commercial standard maize hybrids,
indicating a possible loss of defense traits in plants subjected to
artificial selection and breeding (Mutyambai et al., 2016; Tamiru
et al., 2017) and, as in the case of HR-like necrosis in B. nigra
(Griese et al., 2017), highlighting the role of plant genotype in
defense mechanisms.

The role of OIPVs in inducing defenses in neighboring plants
was not only demonstrated in maize, but also in two clones of
Populus egg-laden by the moth pest, Micromelalopha sieversi
(Guo et al., 2019). The authors observed that neighboring plants
are able to activate defense responses triggered by the release of
volatiles cues (3-carene and b-pinene) from oviposited plants,
including the production of VOCs aimed to prevent egg-laying.

Eggs laid by herbivorous insects on a plant leaf indicate that
larval feeding will soon occur. Recent studies have demonstrated
that, in addition to the enhanced attraction of larval parasitoids
(e.g., Pashalidou et al., 2015), “early herbivore alert” responses
can also increase plant defense against future herbivory (revised
by Hilker and Fatouros, 2015; Hilker and Fatouros, 2016). While
a few studies indicate that insect egg deposition may suppress

plant anti-herbivore defenses (Bruessow et al., 2010; Peñaflor
et al., 2011), additional studies comparing plant responses to egg-

elicitors of the above-mentioned plant defenses.
These secretions can provide eggs with protection against

inner compounds in eliciting plant responses seems unlikely due
to the presence of physical barriers (e.g. eggshell, adhesive glue)

found within the eggs, in the embryo, as no reaction was
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laying by several generalist and specialist insects are necessary to
elucidate the mechanisms involved in this process.

Defense Pathways and Gene Expression
Implicated in Response to Butterfly
Oviposition
It is well known that elicitors (see below), associated to egg
deposition, trigger electrical signals and change Ca2+

homeostasis, which is subsequently followed by downstream
defense responses regulated through hormone signaling
pathways, whose jasmonic acid (JA) and salicylic acid (SA) are
the major players involved (Reymond, 2013). Both the individual
hormones and their crosstalk play an essential role in fine-tuning
defense responses to specific herbivores (Proietti et al., 2018).
Frontiers in Plant Science | www.frontiersin.org 4
The induction of the JA pathway by herbivore-associated
elicitors has been extensively reported; however, there is no clear
evidence that the JA-pathway is induced by insect egg deposition.

The response to oviposition by P. brassicae on Arabidopsis or
Brassica spp., where eggs are laid on the leaf surface without any
damage, appears mainly controlled by SA signaling pathway. In
Arabidopsis plants, SA accumulated at high levels underneath
Pieris eggs and several SA-responsive genes were upregulated by
egg-laying also in systemic leaves (Hilfiker et al., 2014; Bonnet
et al., 2017). These responses were absent in some Arabidopsis
mutants lacking the SA-signaling pathway (Gouhier-Darimont
et al., 2013). This defense mechanism is similar to the response
triggered by pathogens (Gouhier-Darimont et al., 2013).

It is clear that lepidopteran oviposition induces different
morphological, physiological, and chemical responses in plants
that are strongly correlated to the variation in gene expression
levels. The first study of P. brassicae egg-induced transcriptional
changes performed with Arabidopsis whole-genome DNA
microarrays showed the up-regulation of several defense-
related genes, including some regulating cell death and innate
immunity, and others involved in stress responses and in
damaged leaves, with and without prior oviposition, revealed the
up-regulation of PR5, a gene involved in SA-signaling, an
increase in SA levels and flavanol accumulation in egg-laden
but not yet damaged plants (Lortzing et al., 2019). Also Geuss
et al. (2017) showed that feeding larvae of S. exigua induced an
increase in S. dulcamara resistance, by changing its
transcriptional and metabolic responses at both the local and
systemic level. In particular, genes involved in phenylpropanoid
metabolism were upregulated in previously oviposited plants,
suggesting a crucial role of these molecules in oviposition-
primed plant resistance.

Moreover, a study conducted on maize landrace Braz1006
demonstrated that both C. partellus egg deposition and a
treatment with an elicitor that mimics herbivory can induce
the up-regulation of the gene coding for the terpene synthase
TPS23, which catalyzes the final step in the biosynthetic pathway
of (E)-caryophyllene, an important signaling molecule involved
in plant-herbivore interactions (Tamiru et al., 2017).

Egg-Derived Elicitors
During oviposition, insects produce a vast range of substances
from the ovary and posterior parts of the body, which can act as
biotic and abiotic threats, facilitate their deposition
(lubrification) or their substrate attachments. Beyond being
found on the egg surface or at the plant-egg interface, bioactive
compounds can also be found within the egg. Yet, the role of the
hindering the access to plant cell targets (Hilker and Fatouros,
2015). Bruessow et al. (2010) suggested that elicitors should be
observed when empty P. brassicae eggshells were applied at the
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leaf surface. However, the lack of any response could be due to
external egg elicitor inactivation (instead of their absence) that
occurs in the period between deposition and hatching event
(Fatouros et al., 2015).

Experiments conducted with crushed egg extracts (EE)
mimicked the response observed upon egg-laying in A.
thaliana (Little et al., 2007). Using an Arabidopsis transgenic
line containing the promoter of the egg-induced gene PR1
coupled to the b-glucuronidase (GUS) reporter gene, Little
et al. (2007) demonstrated that the application of soluble P.
brassicae EE activates GUS and triggers plant responses. Similar
results were obtained when EE from distantly related insects,
either generalists or specialists, were applied to A. thaliana
transgenic plants.

Although a very few compounds have been isolated, benzyl
cyanide was identified as a molecule responsible for surface
chemical changes induced by P. brassicae oviposition on
Brassica oleracea var. gemmifera. The application of this male-
derived anti-aphrodisiac mimicked the egg-induced arrestment
of Trichogramma brassicae (egg parasitoids) in B. oleracea and
Arabidopsis leaves (Fatouros et al., 2005; Blenn et al., 2012).
Moreover, P. rapae females receive methyl salicylate and indole
as anti-aphrodisiac compounds during mating. When applied
onto the leaf, indole induced changes in the foliar chemistry that
arrested T. brassicae wasps (Fatouros et al., 2009).

Besides the extensive research on plant-insect interactions
and although it is generally assumed that plants detect elicitors
through cell-surface receptors, to date, no such protein has been
isolated and described. Following different attempts, in 2019,
Gouhier-Darimont and co-workers identified an important
component of A. thaliana perception system for insect eggs,
LecRK-I.8, a L-type lectin receptor kinase. This protein seems to
play a key role in early signal transduction steps by controlling
several responses to P. brassicae egg-laying. The authors
demonstrated that a lipidic fraction from P. brassicae eggs
triggers localized cell death and that this response is
significantly attenuated in lecrk-I.8 mutant plants, suggesting
that LecRK-I.8 is involved in the sensing of an egg-derived lipidic
compound (Gouhier-Darimont et al., 2019).

A THIRD PLAYER: EGG-ASSOCIATED
MICROORGANISMS

Symbiotic bacteria play a pivotal role in the development and
survival of their insect hosts, providing a full array of molecules
for digestion, detoxification, and defense against pathogens
(Douglas, 2015). There is still a scant knowledge on
Lepidoptera-associated microbiomes, because the majority of
studies is (i) merely descriptive, (ii) focused on single bacterial
taxon, (iii) a few butterfly/moth species have been extensively
surveyed, or (iv) only rarely endosymbionts have been compared
across different developmental instars (Di Salvo et al., 2019; Gao
et al., 2019; Szenteczki et al., 2019). Nevertheless, an increasing
number of experiments provide evidence for a crucial function of
microbes in basic physiological processes of Lepidoptera
Frontiers in Plant Science | www.frontiersin.org 5
(Paniagua Voirol et al., 2018), e.g. through the modulation of
salivary elicitor biosynthesis (Wang et al., 2018).

Since data gathered until now suggest a remarkable diversity
of (gut) microbiomes across diets and stages, it is questioned
whether Lepidoptera harbor resident beneficial microbes or
more likely acquire from food and/or environment a plastic
microbial community, which favors them under changing
conditions (Hammer et al., 2017). If confirmed, this scenario
implies that eggs might not serve as the means for achieving the
vertical transmission of core gut microbiomes, but only of other
microbial symbionts. The inherited microbes could also be
present on the egg surface and transferred by eggshell
ingestion to newly hatched larvae (Duplouy and Hornett,
2018), but their characterizat ion and function are
completely lacking.

The occurrence of egg-associated bacteria has been reported
for a few species including Manduca sexta (Sphingidae),
Rothschildia lebeau (Saturniidae), Spodoptera littoralis
(Noctuidae), and Lymantria dispar (Erebidae) (Paniagua
Voirol et al., 2018), but there are no insights about potential
roles of egg-associated bacteria in eliciting plant responses.

CONCLUSION

Egg-laying patterns are the outcomes of complex evolutionary
dynamics and shaped by the physical, physiological, and
ecological characteristics of the host plants. Although plant
responses to both eggs and herbivores have been extensively
explored (Hilker and Fatouros, 2015; Schuman and Baldwin,
2016), only a few studies have dealt with herbivore
counteradaptations (Karban and Agrawal, 2002) and even less
with egg defensive/offensive traits (Bruessow et al., 2010;
Peñaflor et al., 2011). However, an increasing number of
insights suggests that (i) the female ability to identify plants
with inadequate plant defenses could be an evolutionarily
advantageous strategy and (ii) the biochemical apparatus of
plants could be subverted by egg compounds to inhibit or
lower the LHP defenses against the incoming larval instars.

Unfortunately, the advance of this research is constrained by
the lack of upstream knowledge about basic mechanisms
fostering the specificity of plant responses. The latter are likely
based on still undiscovered egg-associated compounds (elicitors)
and their plant receptors, which therefore should be among the
first issues to be tackled.
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